

Inkjet 3D Printing

A groundbreaking tool for digital manufacturing

Dr. Els Mannekens ChemStream

- ☐ Aim: to develop innovative materials from design to industrial prototype
- ☐ Core activities:
 - ☐ Innovative contract research
 - ☐ Design and synthesis of (bio-based) functional chemistry (monomers, polymers, surfactants, adhesion promotors...) towards formulations
- ☐ Main deliverables:
 - ☐ Inkjet inks

■ Nano dispersions

☐ Functional 3D printing materials

- **→** Founded in April 2010
- > Staff profile (13 FTE, 10 PhDs)
 - Chemistry (11)
 - Bio Engineer (1)
 - Material scientist (1)
- **➤** Located near Antwerp Belgium
- > Lab-facilities (550 m²)
 - Organic Synthesis
 - Chemical Formulation
 - Characterization
- > Prototype production facility
 - Coatings: 250 L batches
 - Inkjet inks: 25 L batches

Organic Synthesis

- * Crystal, colorant and dispersant design
 - * Photochemistry
- * Interfacial chemistry, wetting and adhesion
 - * Superabsorbent polymers
 - * Flow chemistry

Technology

- * Dispersion technology
- * Coating, printing, jetting (Modular printing unit MPU)
- * Radiation curing (UV, UV-LED, e-Beam)
- * Atmospheric plasma

Methodology

- * Molecular modeling
 - * Design of Experiments (DoE)
- * Smart throughput screening
- * Hansen solubility parameters (HSP)

Analytical and physical chemical tools

- * UVVIS, FTIR, GCMS, LCMS, GPC
- * Particle size distribution (PSD)
- * Contact angle, surface tension, viscosity

Inkjet @ ChemStream

Modular Printing Units

- ☐ Mimic of an in-line printing process
- ☐ Fast iterations of ink prototypes
- ☐ Different inkjet printheads

Main 3D printing techniques

Material extrusion

Thermoplasts: PLA, ABS, PET, TPU, etc.

The binder can be jetted via inkjet technology

VAT (photo)polymerisation

Powder bed fusion

Thermoploastic powders (Nylons) Aluminium, stainless steel, titanium, etc.

Main 3D printing techniques

Material positioning

Strength vs density

Strength vs toughness

ChemStream

Strength vs elongation

- **→** Material Extrusion
- **→** VAT polymerization
- Material Jetting (photopolymer)

3D inkjet printing

- **→**Binder Jetting
- **→**Powder Bed Fusion

Room for improvement!

Basic principle: 1 printhead, using 1 object ink

The inks are jetted and UV-cured, layer by layer

Basic principle: 1 printhead, using 1 object ink

Ophtalmic lenses (OPTICAL application)

See: ink development for Luxexcel's 3D printed lenses

Importance:

- Ink parameters
 - Spreading of the ink
 - Ink-ink interactions
 - UV-sensitivity fine-tuning
 - Ink R.I.
 - Transparency
 - Non-yellowing
- Print parameters
 - Drop deposition design
 - Print speed
 - Curing power

Benefits:

- Customized prescription lenses
- No post-processing, no polishing required
- No waste of material
- Volume production
- Fast production process
 - Multiple-object printing
 - 1 printjob replaces about 30 traditional process steps

Through-put

Basic principle: 1 printhead, using 1 object ink

Dogbones

Importance:

- Ink parameters
 - Spreading of the ink
 - Ink-ink interactions
 - **UV-sensitivity fine-tuning**
 - Smart choice of building blocks
- Print parameters
 - Drop deposition design
 - Print speed
 - Curing power

Mechanical properties

Benefits:

- Design of new materials
- Customized physical properties

Molecular design toolbox

- ☐ Cross linking density
- ☐ Functionality side chain
- ☐ Functionality linker
- ☐ Intramolecular interactions

Using 2 printheads (1 object ink + 1 support ink):

=> Support ink gets washed away after printing

ChemStream develops water removable support inks

Using 2 printheads (2 object inks /1 object ink + 1 support ink):

Accuracy

Multi-material

Visual/Aestethic objects

Importance:

- Ink parameters
 - Spreading of the ink
 - Ink-ink interactions
 - UV-sensitivity fine-tuning
 - Transparency
 - Use of nano-pigment dispersions for color effects
- Print parameters
 - Drop deposition design
 - Print speed
 - Curing power

Benefits:

- Design of customized 3D objects
- Small to high volume production

Nano-pigment dispersion toolbox

- ☐ Inkjet-quality pigments
- ☐ Fitting dispersion agents
- ☐ Milling expertise

Using 2 printheads (1 object ink + 1 support ink):

Functional objects (ex. Microreactors)

Importance:

- Ink parameters
 - Spreading of the ink
 - Ink-ink interactions
 - UV-sensitivity fine-tuning
 - Transparency
 - Easily removable support ink
- Print parameters
 - Drop deposition design
 - Print speed
 - Curing power

Benefits:

- Unlimited design of microreactors
- High accuracy, narrow channels
- Small to high volume production
- Fast production process: 1 printjob replaces a complex conventional production process

Through-put Multi-material Accuracy

Using 3 printheads (2 object ink + 1 support ink):

=> Support ink gets washed away after printing

=> In inkjet it is possible to use even more printheads and ink types!

Multi-material

Through-put

Mechanical properties

Opportunities:

- Unique designs of objects
- Combination of structural design
 + mechanical properties
 variations in 1 object
- Embedded functionalities
- Small to high volume production
- Fast production process

Multi-material

Through-put

Mechanical properties

High throuhput 3D inkjet manufacturing:

DP Polar – AM polar i1

- High Speed Rotative process (HSR)
- Multi-material printing
 - Variation in toughness
 - Variation in colours
 - Support ink soluble in water
- Print width = max. 420 mm (16,5 in)
- Layer thickness = 4-25 um
- Build resolution (xyz) = up to 720 x
 720 x 5000 dpi
- Net Build Volume = 700 L
- Productivity= max 10 L/h

High throuhput 3D inkjet manufacturing:

In conclusion:

How can ChemStream support the development of such a process?

- Smart choice of UV-curable building blocks to obtain certain object specifications (physical properties, colour/transparancy, functionality,...)
- Fine-tuning of:
 - the inks for specific printhead compatibility
 - the ink-spreading characteristics
 - the ink-ink interactions
 - the colour of the inks (if necessary)
- Design of a compatible support ink
- Exploration and fine-tuning of the ink deposition process using in house modular printing units
- Producing inks to prototype level (up to 25L / ink batch)

For more info

come and see us

@

Stand A4